Metabolic scaling in modular animals

Scott C. Burgess, Will H. Ryan, Neil W. Blackstone, Peter J. Edmunds, Mia O. Hoogenboom, Don R. Levitan, Janie L. Wulff. Metabolic Scaling in Modular Animals. Invertebrate Biology (accepted)

Abstract: Metabolic scaling is the relationship between organismal metabolic rate and body mass. Understanding the patterns and causes of metabolic scaling provides a powerful foundation for predicting biological processes at the level of individuals, populations, communities, and ecosystems. Despite intense interest in, and debate on, the mechanistic basis of metabolic scaling, relatively little attention has been paid to metabolic scaling in clonal animals with modular construction, such as colonial cnidarians, bryozoans, and colonial ascidians. Unlike unitary animals, modular animals are structural individuals subdivided into repeated morphological units, or modules, each able to acquire, process, and share resources. A modular design allows flexibility in organism size and shape with consequences for metabolic scaling. Furthermore, with careful consideration of the biology of modular animals, the size and shape of individual colonies can be experimentally manipulated to test competing theories pertaining to metabolic scaling. Here, we review metabolic scaling in modular animals and find that a wide range of scaling exponents, rather than a single value, has been reported for a variety of modular animals. We identify factors influencing variation in intraspecific scaling in this group that relate to the general observation that not all modules within a colony are identical. We highlight current gaps in our understanding of metabolic scaling in modular animals, and suggest future research directions, such as manipulating metabolic states and comparisons among species that differ in extent of module integration.

Advertisements